Axial Asymmetry of the Charge- and Spin-Density Distributions in Π States. Molecular Quadrupole Moments and Hyperfine Coupling Constants of CH, NH, OH, CF, LiO, NO, and FO

Pablo J. Bruna and Friedrich Grein*

Department of Chemistry and Centre for Laser, Atomic and Molecular Sciences (CLAMS), University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5E3

Received: September 5, 2008; Revised Manuscript Received: December 11, 2008

The axial *asymmetry* of the charge- and spin-density distributions in Π states is studied via second-rank traceless tensors P_{ii} (ii = xx, yy, zz), namely, quadrupole moments (Θ_{ii}), electric field gradients (q_{ii}), and magnetic dipolar (T_{ii}) hyperfine coupling constants (hfcc's). In linear molecules, it holds that $P_{xx} \neq P_{yy} \neq P_{zz}$ for Π , but $P_{xx} = P_{yy} \neq P_{zz}$ for Σ , Δ , Φ ,..., states. Thus, *traceless* P_{ii} in Π states have two independent parameters, $P_{\Pi} = P_{zz} \propto [r^m(3 \cos^2 \theta - 1]$ and $\delta P_{\perp} = |P_{xx} - P_{yy}| \propto [r^m \sin^2 \theta]$, with $m = 2(\Theta_{ii})$ or $-3(q_{ii}, T_{ii})$. All linear states have $P_{\Pi} \neq 0$, but only Π states exhibit $\delta P_{\perp} \neq 0$, as shown by hfcc's like $c = (3/2)T_{zz}$, and $d = |T_{xx} - T_{yy}|$, as well as $q_0 = (-q_{zz})$ and $|q_2/2| = |q_{xx} - q_{yy}|$. Little is known about Θ_{zz} and $\delta \Theta_{\perp} = |\Theta_{xx} - \Theta_{yy}|$ in Π states since most experimental values (gas-phase) are rotational averages, and several theoretical studies have reported Θ_{zz} but assumed $\delta \Theta_{\perp} = 0$. The diatomics studied here have $X^2\Pi_{1/2}(\pi^1)$ ground states, like CH and NO, or are of type $X^2\Pi_{3/2}(\pi^3)$, like OH, CF, LiO, and FO. The A³\Pi($\sigma\pi^3$) state of NH is also included. Our P_{Π} and δP_{\perp} values—calculated at the experimental R_e 's with the B3LYP/aug-cc-pVQZ method—reproduce well the available literature data. The properties of the CF and FO radicals are not well-known so that our {c, d} and { q_0, q_2 } values should help future experimental studies of their hyperfine spectra. Excluding OH, the complete quadrupole sets { Θ_{zz} , $\delta \Theta_{\perp}$ } are new for all species discussed here. For comparison purposes, Θ_{zz} of a low-lying Σ state is also calculated for each $X^2\Pi$ radical.

I. Introduction

The axially asymmetric charge- and spin-density distributions (CDD and SDD) of linear radicals in electronic Π states are studied via three second-rank traceless tensorial properties P_{ii} (ii = xx, yy, zz). One property describes the interaction between spin dipoles, as given by $T_{ii}(X)$, the magnetic dipolar hyperfine coupling constant (hfcc) for nucleus X.¹ The other two are electric properties: (1) the electric field gradient (efg) parameter $q_{ii}(X)$, related to the nuclear quadrupole coupling constant $\chi_{ii} = eQq_{ii}(X)$,² Q = nuclear quadrupole moment, and (2) the molecular quadrupole moment Θ with Cartesian components Θ_{ii} .³ The quantum mechanical operators for $P_{ii} = T_{ii}$, q_{ii} , Θ_{ii} behave equally with respect to (the symmetry operation of) rotation about the molecular axis z.⁴

We have recently determined⁴ how many independent parameters (*n*) are needed to describe the electric 2^{*l*}-pole moments ($\equiv \mathbf{P}$) of linear radicals in different electronic states, i.e., whether the corresponding CDDs are fully described by one (P_{\parallel}) or two ($P_{\parallel}, \delta P_{\perp}$) anisotropies: Σ states have n = 1 (P_{\parallel}) for all *l*-values, whereas Π states have n = 2 ($P_{\parallel}, \delta P_{\perp}$) for $l \ge$ 2 (quadrupole Θ and higher multipoles). Interestingly, Δ states show a mixed behavior, with n = 1 for l = 1, 2, 3 but n = 2for $l \ge 4$.

In general, measured gas-phase multipole moments are rotational averages, i.e., the asymmetry of the CDD in Π states $(\Theta_{xx} \neq \Theta_{yy} \neq \Theta_{zz})$ cannot be verified. As well, experimental multipoles are scarce for Π states.³ Thus, other traceless second-rank $P_{ij} = T_{ii}$, q_{ii} properties—amenable to experiments and free

* Corresponding author. Phone: +1-506-453-4776. Fax: +1-506-453-

In the present paper we present calculations on both P_{\parallel} and δP_{\perp} [**P** \equiv **T**, **q**, **Θ**] for six X²Π diatomics (CH, NO, OH, LiO, CF, FO)⁹⁻¹⁴ and A³Π of NH.⁷ The $\delta \Theta_{\perp}$ anisotropies are new for all species, except for OH. This paper is organized as follows: section II deals with the general properties of P_{\parallel} and δP_{\perp} , whereas section III presents our results. The whole material of this work is, respectively, discussed and summarized in sections IV and V.

II. Second-Rank Tensor Properties: Anisotropies

II.A. General Definitions. First we clarify our nomenclature regarding tensors for linear molecules $(C_{\infty v}, D_{\infty h})$. The molecule-fixed system of coordinates is used throughout (z = molecular axis, and <math>ii = xx, yy, zz). We associate three equivalent types of tensors to a given second-rank property:

(i) Cartesian tensor C_{ii} (second moments). Linear molecules have three nonzero components, $C_{ii} \equiv \{x^2, y^2, z^2\}$ for Θ_{ii} , or $C'_{ii} \equiv \{x^2/r^5, y^2/r^5, z^2/r^5\}$ for hfcc's, with $r^5 = (x^2 + y^2 + z^2)^{5/2}$.

of rotational averaging—have to be considered which provide direct evidence about the difference in CDD/SDD symmetries in Σ and Π states. According to the literature on NO and OH (X² Π), for example, two dozen theoretical papers^{5,6} studied one or several of the P_{ii} (T_{ii} , q_{ii} , Θ_{ii}) properties but only 10 reported both P_{\parallel} and δP_{\perp} . Experimentally,¹ the { $c = 3T_{\parallel}/2$, $d = \delta T_{\perp}$ } hfcc's indicate axially *asymmetric* SDDs, e.g., in MHz, {–59, 113} for ¹⁴NO and {221, -429} for ¹⁷OH. The same applies to triplet states, with values of {15, 66} for ¹⁴NH (A³ Π)⁷ and {16, 213} for ¹³CO (a³ Π).⁸ Further, the { $\chi_0(P_{\parallel})$, $\chi_2(\delta P_{\perp})$ } parameters, in MHz, are {-2, 24} for ¹⁴NO and {-2, 66} for ¹⁷OH.¹ Throughout, both *d* and χ_2 clearly dominate the hfcc's so that works neglecting δP_{\perp} do not correctly describe Π states.

Here, $\sum C_{ii} = r^2$ and $\sum C'_{ii} = r^{-3}$, that is, both C_{ii} and C'_{ii} are *traced* tensors. Since either $x^2 = y^2 \neq z^2$ or $x^2 \neq y^2 \neq z^2$, the number (*n*) of independent components is 2 or 3, respectively;

(ii) tensor P_{ii} (P'_{ii}) with linear combinations of Cartesian C_{ii} (C'_{ii})'s satisfying the *traceless* condition $\sum P_{ii} = (P_{xx} + P_{yy} + P_{zz}) = 0$. Here, description of axially symmetric and asymmetric DDs with P_{ii} (P'_{ii}) tensors requires n = 1 and 2 parameters, respectively. Typical P_{ii} examples are the quadrupole terms $\Theta_{xx} = (3x^2 - r^2)/2$, $\Theta_{yy} = (3y^2 - r^2)/2$, and $\Theta_{zz} = (3z^2 - r^2)/2$ [Buckingham's definition].³ Note that each Cartesian component P_{ii} (Θ_{ii}) or P'_{ii} (T_{ii} , q_{ii}) is defined using the same formula;

(iii) irreducible tensors $P_0^{(0)}$ and $P_m^{(2)}$, the latter with two nonzero components, $P_0^{(2)}$ and $P_{12|}^{(2)}$ [$\equiv \operatorname{Re}(P_{\pm 2}^{(2)})$].^{4,15} The *isotropic* part of any second-rank tensor consists of the trace, e.g., $P_0^{(0)} \propto r^2$ for the molecular quadrupole. Only for traced tensors is $P_0^{(0)}$ of interest, e.g., $P_0^{(0)} \equiv \langle \alpha \rangle = (\alpha_{xx} + \alpha_{yy} + \alpha_{zz})/3$ for the polarizability. Further, $P_0^{(2)}$ is proportional to P_{zz} , whereas the perpendicular anisotropy is $P_{12|}^{(2)} = |P_{xx} - P_{yy}|$. Taking again the quadrupole as an example, its irreducible $P_m^{(2)}$ parts are $P_0^{(2)}$ $\equiv \Theta_0^{(2)} = \Theta_{zz} = (3z^2 - r^2)/2$ and $P_{\rm Iml}^{(2)} \equiv \Theta_{12|}^{(2)} = |\Theta_{xx} - \Theta_{yy}|$ $= (3/2)|x^2 - y^2|$.

Each of the C_{ii} , P_{ii} , and $P_m^{(l)}$ sets has practical applications. Ab initio calculations on linear molecules are carried out in the lower $C_{2\nu}/D_{2h}$ symmetry, with C_{ii}/C'_{ii} being calculated first and thereafter transformed to P_{ii}/P'_{ii} 's. The C_{ii} , C'_{ii} sets are not symmetry adapted with respect to the $C_{\infty\nu}/D_{\infty h}$ point groups. For the P_{ii} set, only $P_{zz} \equiv P_0^{(2)}$ is symmetry adapted $(\Sigma^+_{(g)})$.⁴ The component $P_{\pm 2}^{(2)} \propto [(P_{xx} - P_{yy}) \pm 2iP_{xy}]$ transforms like doubly degenerate $\Delta_{(g)}$.⁴ In $C_{2\nu}$ symmetry, the Re and Im parts of $P_{\pm 2}^{(2)}$ transform as A_1 (totally symmetric) and A_2 , respectively. Here, we work exclusively with the A_1 component, written as the absolute value $|P_{xx} - P_{yy}| = P_{|2|}^{(2)}$.

Summing up, the whole process starts with C_{ii} { C_{xx} , C_{yy} , C_{zz} }, a Cartesian set physically sound to describe linear species but inadequate to use in conjunction with group theory. In going from { C_{ii} } to { $P_0^{(0)}$, $P_m^{(2)}$ }, the C_{ii} set is decomposed into one *isotropic* $P_0^{(0)}$ and two *anisotropic* parts $P_m^{(2)}$ (lml = 0, 2), one parallel and the other perpendicular to the molecular axis.¹⁵

II.B. Parallel Anisotropy ($P_{||}$). There exist several definitions of the second-rank anisotropies.^{3,4,16–18} The parallel anisotropy $P_{||}$, in polar (eqs 1a–1b') and in Cartesian coordinates (eqs 1b'–1e) read as

$$P_{\parallel} = P_{zz} = P_0^{(2)}$$

= $k(r)[(3\cos^2\theta_z - 1)/2] = k(r)[2(\pi/5)^{1/2}Y_0^{(2)}(\theta_z, \phi_z)]$
(1a,1a')

$$=k(r)[L_0^{(2)}(\cos\theta_z)] = k(r)[L_0^{(2)}(z/r)]$$
(1b,1b)

$$=k(r)[r^{-2}\{3z^2-r^2\}/2]$$
 (1c)

$$=k(r)[r^{-2}\{(z^2-x^2)+(z^2-y^2)\}/2]$$
(1d)

$$=k(r)[r^{-2}\{(z^2 - (x^2 + y^2)/2\}]$$
(1e)

Here, r = distance with respect to the chosen origin; $Y_0^{(2)}(\theta_z, \varphi_z) =$ spherical harmonics $Y_m^{(2)}$ for m = 0; and $L_0^{(2)}(\alpha) = (3\alpha^2 - 1)/2$, the associated Legendre polynomial $L_m^{(l)}(\alpha)$. As shown by eqs 1a, 1b, an irreducible tensor transforms under rotations as the corresponding spherical harmonics.¹⁵

Equations 1a-1e apply to each $P_{ii} = T_{ii}$, q_{ii} , Θ_{ii} . Which of them is under consideration is specified by the factor k(r) composed of appropriate constants and/or radial functions (other than r^{-2}). For example, in ${}^{2}(\Sigma, \Pi)$ states the hyperfine parameter $c [= (3/2)T_{zz}]$ has $k(r) = 2r^{-3}$ if one works with atomic units

but $k(r) = (g_e g_n \mu_B \mu_N) \times 2r^{-3}$ with MHz units.^{1,18} As another example, Buckingham³ defines the quadrupole $\Theta_{zz} = r^2[(3 \cos^2 \theta_z - 1)/2]$ so that $k(r) = r^2$. However, Hirschfelder et al.¹⁶ define such component as $\Theta'_{zz} = r^2[(3 \cos^2 \theta_z - 1)] = 2\Theta_{zz}$ so that now $k(r) = 2r^2$.

Equations 1a-1e give insights about the symmetry features of P_{zz} . Equation 1a shows that P_{zz} only depends on the polar angle θ , i.e., on the projection onto the *z*-axis. Moreover, $P_{zz}/k(r)$ exhibit following properties: (i) a maximum value of 1 along *z*, (ii) a minimum of -1/2 in the *xy*-plane, and (iii) nodal surfaces for $\cos \theta = \operatorname{sqrt}(1/3)$, or $\theta = 54^{\circ}44'$ (like as in d_o -orbitals). In short, the operator P_{zz} (eq 1a) is *positive* for θ ranging from about -55° to 55° for both +z and -z directions, but *negative* between about 55° and 125° (and from about -235° to -305°).

The description above—with the lobe signs $(+)_z(-)_{xy}(+)_z(-)_{xy}$ counted anticlockwise—only applies for positive k(r). For instance, the electronic contribution to Θ is *negative* and the lobe's scheme becomes $(-)_z(+)_{xy}(-)_z(+)_{xy}$. The positive nuclear contribution only affects Θ_{zz} . Thus, a prolate-shaped CDD has a *negative* Θ_{zz} , whereas an oblate-shaped has a *positive* Θ_{zz} . In chemical language, a prolate structure reveals the σ -density to be more extended spatially (along *z*) than the π -density (*xy*-plane); conversely, an oblate distribution ($\Theta_{zz} > 0$) unveils a predominant π -density.¹⁹

Equations 1c-1e are the expressions used in ab initio packages. Equation 1c shows that P_{zz} vanishes for spherical symmetry, where $x^2 = y^2 = z^2 = r^2/3$. This never happens in linear molecules, which are either axially symmetric $(x^2 = y^2 \neq z^2)$ or asymmetric $(x^2 \neq y^2 \neq z^2)$. According to eq 1d, P_{zz} ($P_{||}$) is proportional to $[(z^2 - x^2) + (z^2 - y^2)]$, the sum of two basic anisotropies, $(z^2 - x^2)$ and $(z^2 - y^2)$. Further, eq 1e shows that $P_{zz} \propto [z^2 - (x^2 + y^2)/2]$, where z^2 is being compared against the average $(x^2 + y^2)/2$.

II.C. Perpendicular Anisotropy, $\delta P_{\perp} \propto |P_{xx} - P_{yy}|$. The perpendicular components P_{xx} and P_{yy} are

$$P_{xx} = k(r)[(3\cos^2\theta_x - 1)/2] = k(r)[r^{-2}\{3x^2 - r^2\}/2]$$
(2)

$$P_{yy} = k(r)[(3\cos^2\theta_y - 1)/2] = k(r)[r^{-2}\{3y^2 - r^2\}/2] \quad (3)$$

Here, $\cos \theta_x$ and $\cos \theta_y$ are direction cosines. Since $\sum P_{ii} = 0$, the relation $P_{zz} = -(P_{xx} + P_{yy})$ is obeyed by all electronic states. Only for symmetric CDD/SDDs it holds $P_{xx} = P_{yy}$, or equivalently, $P_{xx} = P_{yy} = -P_{zz}/2$. The *perpendicular* anisotropy δP_{\perp} [$\propto P_{12}^{(2)}$] is defined⁴ as

$$\delta P_{\perp} = |P_{xx} - P_{yy}| = |k(r)[(3/2)r^{-2}\{x^2 - y^2\}]| \qquad (4a)$$

$$= |k(r)[(3/2)\{\sin^2\theta(\cos^2\phi - \sin^2\phi)\}]|$$
 (4b)

$$= |k(r)[(3/2)\{\sin^2\theta\cos 2\phi\}]|$$
(4c)

where $\varphi = azimuthal angle.$ The factor $\cos 2\varphi$ assures that $\langle \psi_{\Lambda=+1}|\sin^2\theta\cos 2\varphi|\psi_{\Lambda=-1}\rangle$ is nonzero only for Π states.⁴ The operator eq 4a has the same functional dependency as an atomic $d_{\delta}[d_{(x^2-y^2)}]$ orbital, where again the four lobes alternate their signs as (+)(-)(+)(-), or similar cyclic variations.

III. Results

Cartesian components for T_{ii} , q_{ii} , and Θ_{ii} are calculated with GAUSSIAN03,²⁰ using the B3LYP/aug-cc-pVQZ method. Electric and magnetic properties are evaluated with CDDs and SDDs, respectively. The origin of coordinates lies at atom X for hfcc's, and at the center of mass for Θ_{ii} . These first-order properties are calculated as expectation values, $\langle P \rangle = \int P(\Psi_{\Lambda} * \Psi_{\Lambda}) d\tau$, where Ψ_{Λ} is the electronic wave function of a given Λ state. The results are first presented for T_{ii} (best studied

TABLE 1: Magnetic Hyperfine Coupling Constants for H, Li, and C Atoms in the X²II Radicals CH, OH, LiO, and CF, as Well as $A^{3}II$ of $NH^{a,b,c}$

Х	XY	ref	$c (3/2T_{zz})$	$d T_{xx} - T_{yy} $	$b_{ m F}$	b	a'	а
Н	$CH(\pi^1)$	tw	0.110	0.081	-0.010	-0.047	0.118	
	expt	9e	0.107	0.082	-0.013	-0.049	0.118	0.102
		9b	0.109	0.082	-0.013	(-0.049)	0.118	0.102
		61	0.109	0.070	-0.012	(-0.046)	0.106	0.103
		9c	0.111	(0)	-0.012	(-0.049)		
		9d	0.109	(0)	-0.012	(-0.048)		
	$OH(\pi^3)$	tw	0.249	0.106	-0.014	-0.097	0.189	
	expt	6a	0.250	0.106	-0.017	(-0.100)	0.189	0.161
	expt	11c, d	0.245	0.106	-0.016	(-0.098)	0.188	0.162
		9b	0.245	0.106	-0.016	(-0.098)	0.188	0.163
		6i	0.249	0.108	-0.016	(-0.099)		0.165
		61	0.250	0.090	-0.018	(-0.101)	0.173	0.164
		6b	0.259	0.071			0.157	0.158
		9d	0.244	(0)	-0.014	(-0.095)		
	$NH(\sigma\pi^3)$	tw	0.185	0.049	0.067	0.005	0.111	
	expt	7	0.170	0.049	0.067	0.010	0.106	0.139
		9b	0.172	0.057	0.067	0.010	0.114	0.126
		61	0.183	0.039	0.070	0.009	0.100	0.132
Li	$LiO(\pi^3)$	tw	0.068	0.018	-0.009	-0.032	0.041	
	expt	12a	0.068	0.019	(-0.086)	-0.109	0.042	0.039
	expt	12b	(0.074)	0.009	(-0.070)	-0.095	0.034	0.029
С	$CH(\pi^1)$	tw	-1.017	2.104	0.025	0.364	1.765	
	expt	9e	-0.977	2.055	0.037	(0.363)	1.729	1.626
		9a	-0.969	1.940		(0.323)	1.617	1.614
		9b	-0.977	2.061	0.033	(0.359)	1.735	1.640
		61	-0.959	1.918	0.011	(0.331)	1.599	1.599
		9c	-0.951	(0)	0.032	(0.349)		
		9d	-0.852	(0)	0.004	(0.288)		
	$CF(\pi^3)$	tw	-1.114	2.163	0.041	0.412	1.792	

 ${}^{a}c = (3/2)\langle (3 \cos^{2} \theta - 1)/r^{3} \rangle_{\text{SD}}; d = (3/2)\langle 3 \sin^{2} \theta/r^{3} \rangle_{\text{SD}}; b_{\text{F}} = (8\pi/3)|\psi_{\Lambda}(0)|^{2}_{\text{SD}}; b = b_{\text{F}} - c/3; a' = d + c/3; a = 2\langle r^{-3} \rangle_{\text{CD}}$ (refs 1 and 18). SD and CD stand for spin- and charge-density distributions. b Values given in parentheses were here derived using published information. d = (0) indicates the original article does not report this parameter. c All data in atomic units.

experimentally), then for q_{ii} (less known), and finally for Θ_{ii} (mostly theoretical data). All results are in atomic units (au), i.e., independent of isotopic species for hfcc's. The equilibrium distances²¹ used are (in angstroms): 1.1199/1.085 for CH, 1.0362/1.037 for NH, 0.9697/1.0121 for OH, 1.688/1.589 for LiO, 1.1508/1.318 for NO, 1.2667/1.327 for CF, and 1.354/ 1.80 for FO (first value for the ground state; second for the excited state used in the quadrupole calculations).

III.A. Magnetic Dipolar Term *c* $[3T_{zz}/2]$ and Perpendicular Anisotropy *d* $[T_{xx} - T_{yy}]$. Magnetic hfcc's are reported as A_{iso} and $A_{dip} [T_{xx}, T_{yy}, T_{zz}]$ in theoretical works;²² by *a*, *b*, *c*, *d* in spectroscopy;^{1,18} and by A_{\parallel} , A_{\perp} in EPR studies.^{1b} Relevant equivalencies are $A_{iso} = b_F = (b + c/3) = (A_{\parallel} + A_{\perp})/3$, $A_{dip} = c/3 = T_{zz}/2 = (A_{\parallel} - A_{\perp})/3$, $A_{\parallel} = (b + c) = (A_{iso} + 2A_{dip})$, $A_{\perp} = b = (A_{iso} - A_{dip})$, and $d = (T_{xx} - T_{yy})$. Tables 1 and 2 list the calculated values of *c* and *d*, together with literature data (the magnetic hfcc's *a*, *a'*, *b*_F, and *b* are also given; see Table 1 for definitions). The two magnetic anisotropies are^{1,18}

$$T_{\text{II}}: \quad c = [(36\pi/5)^{1/2}] K \langle \Lambda_{+1} | r^{-3} \cdot Y_0^{(2)}(\theta, \phi) | \Lambda_{+1} \rangle_{\text{SD}} = (3/2) K \langle r^{-3} \cdot (3\cos^2\theta - 1) \rangle_{\text{SD}}$$
(5)
$$\delta T_{\perp}: \quad d = -[(24\pi/5)^{1/2}] K \langle \Lambda_{+1} | r^{-3} \cdot Y_0^{(2)}(\theta, \phi) | \Lambda_{-1} \rangle_{\text{SD}}$$
$$= -(3/2) K \langle \Lambda_{+1} | r^{-3} \cdot \sin^2\theta \cdot e^{i2\phi} | \Lambda_{-1} \rangle_{\text{SD}}$$
(6a)

 $\propto (3/2)K\langle r^{-3} \cdot \sin^2 \theta \rangle_{\rm SD}\}^{\#} \tag{6b}$

Here, K = 1. We find δT_{\perp} from eq 6b—a common definition in the literature, here labeled as #— to be somewhat misleading since (1) as written, $\langle r^{-3} \cdot \sin^2 \theta \rangle$ can only be positive, although experimentalists sometimes report negative expectation values

for this anisotropy, and (2) it ignores that the perpendicular anisotropy also depends on the azimuthal angle φ . The other two definitions are mathematically sound, as they explicitly show a φ dependency via the phase-factor $e^{i2\varphi}$.²³

Our results are analyzed below and compared with literature data. In general terms, the B3LYP/aug-cc-pVQZ calculations reproduce within 10%, or better, all literature data known to us. Prior theoretical values of the two dipolar anisotropies c, d have only been reported for CH, NH, and OH.^{6i,9b} Further, two ab initio papers on NO,^{5a,e} and one on CF,^{13a} reported c but not d.

The parameter a' = [c/3 + d] describes the isotropic average $\langle 1/r^3 \rangle_{\text{SDD}}$, to be compared with $a \propto \langle 1/r^3 \rangle_{\text{CDD}}$. Both averages differ by no more than 10%.^{1c,24} Since $P_{xx,yy} = (-P_{zz} \pm \delta P_{\perp})/2$, the Cartesian T_{ii} 's are $T_{xx} = (-c/3 + d/2)$ and $T_{yy} = (-c/3 - d/2)$, together with $T_{zz} = 2c/3$.

III.A.1. H in CH, OH, and NH, and Li in LiO. All magnetic hfcc's for the s-type atoms H and Li are small (below 0.25 au, Table 1). The electric dipole moments μ_e for the X²Π hydrides MH give charge distributions $M^{\delta-}H^{\delta+}$ indicating little charge (spin) density at H. Also, the X²Π states do not have singly occupied σ -MOs [($2\sigma^21\pi$) for CH, ($2\sigma^21\pi^3$) for OH], thus resulting in small and negative $b_F(H)$'s, -0.010 to -0.017 au. Taking an isotropic $b_F = 0.318$ au as reference for H(s), both CH and OH have average H(1s) SDDs below 5%. The same picture applies to LiO [X²Π($\sigma^2\pi^3$)], with a strong ionic character Li⁺O⁻ ($\mu_e \approx 6$ D), and a Li(2s) spin density lying around 4%.

The dipolar components c(Y) and d(Y) [Y = H, Li] are throughout small in these MH and LiO radicals—as expected for atoms without valence [H] or quite-diffuse p-AOs [Li]. The

spin anisotropy around H/Li is actually being "induced" by the more compact valence p-AOs from neighboring centers. The longitudinal anisotropy c(Y) is somewhat larger than the perpendicular d(Y) (Table 1). The remaining Π radicals XY show the opposite trend (see below).

 $A^{3}\Pi(2\sigma 1\pi^{3})$ of NH with σ and π open shells has $b_{\rm F}({\rm H}) = 0.067$ au (299 MHz), giving an s(H) spin density of ca. 20%. Experimental and theoretical data are well reproduced (Table 1).

III.A.2. *C* in *CH* and *CF*. Both CH and CF have $X^2\Pi(\pi^1)$ ground states. The single π -electron is a pure $2p_{\pi}(C)$ species in CH but a delocalized MO $[2p_{\pi}(C) + 2p_{\pi}(F)]$ in CF. Inspection of Table 1 reveals three features: (i) the π open shell invariably gives a positive perpendicular anisotropy d(C) but a negative longitudinal anisotropy c(C), (ii) the parameter d(C) is about twice as large as |c(C)|, and (iii) the pair $\{c(C), d(C)\}$ has practically the same magnitude in both CH and CF. Pictorially, these trends indicate that the C, N, O, and F centers in these X²\Pi radicals exhibit oblate-shaped SDDs.

III.A.3. *N* in *NO* and *NH*. The general trends are maintained in NO, with d(N) positive and larger than |c|. The same applies to d(N) in NH, but now $c(N) \ge 0$ due to a $\sigma\pi^3$ open shell. Accordingly, the Fermi contact term $b_F(N)$ in NH(A³\Pi) is substantially larger than for all other diatomics in Tables 1 and 2.

III.A.4. *O* in OH, LiO, NO and FO. Except for NO, the O atom carries most of the SDD in all other O-containing species (Table 2), namely, $\{c; d\}_0$ amounts to $\{-1.3; 2.9 \text{ au}\}$ in NO but on average about $\{-2.9; 5.9 \text{ au}\}$ in OH, LiO, and FO.

III.A.5. *F* in *CF*, *FO*. The existence of an oblate SDD, with c(F) < 0, and smaller in magnitude than d(F) > 0, is maintained in CF and FO. Theory and experiment agree that F carries more SD in FO than in CF.

III.B. Electric Field Gradient (q_{zz}) and Perpendicular Anisotropy $\delta q_{\perp} = (q_{xx} - q_{yy})$. According to Western et al.,^{10d} the two efg quantities reported by experimentalists are

$$q_{\parallel}: \quad q_0 = \langle \Lambda = +1 | \sum_{i} e_i r_i^{-3} \cdot (3 \cos^2 \theta_{iz} - 1) | \Lambda = +1 \rangle_{CD}$$
(7)

$$[2\delta q_{\perp}]: \quad q_2 = \left\langle \Lambda = +1 | \sum_i e_i r_i^{-3} \cdot 3 \sin^2 \theta_{iz} \cdot e^{i2\phi} | \Lambda = -1 \right\rangle_{\text{CD.}}$$
(8)

The sum runs over all charged particles, except the nucleus under consideration. For XY, the nuclear contribution to $q_{zz}(X)$ due to atom Y is $[q_{zz}]_Y = 2Z_Y/R^3$. The label CD points out that these matrix elements are calculated with CDDs. Equation 8 with the factor $e^{i2\varphi}$ is the correct definition, whereas many articles/textbooks give $q_2 = \langle \Lambda_{+1} | \sum_i e_i r_i^{-3} \cdot 3 \sin^2 \theta_{iz} | \Lambda_{-1} \rangle^{\#}$. In our nomenclature, $q_0 \equiv q_{zz}$ and $q_2 \propto |q_{xx} - q_{yy}|$. Experimentally,^{5i,25} $|q_2| = 2 |q_{xx} - q_{yy}|$ so that we report our results as $q_2' = |q_{xx} - q_{yy}|$. Thus, the Cartesian efg components are $q_{zz} = q_0$, $q_{xx} = [-q_0/2 + \delta q_{\perp}/2]$, and $q_{yy} = [-q_0/2 - \delta q_{\perp}/2]$, with $\delta q_{\perp} = q_{2}' = |q_{2}/2|$. Table 3 summarizes our results, together with literature data. Previous theoretical efg's for both atoms in CH,^{6c,9a} and OH,^{6c,d} and for O in NO,^{5h,6j} omitted the leading term δq_{\perp} .

Experimental (q_0) and our theoretical (q_{zz}) values are of similar magnitude but opposite signs, i.e., B3LYP/aug-cc-pVQZ, give quite reliable efg values (like as for dipolar hfcc's). For atoms different than H or Li, the relative magnitude between q_0 and δq_{\perp} is the same as for the magnetic *c* and *d* parameters: the perpendicular component predominates by large (see also section IV).

Experiment and theory disagree when reporting δq_{\perp} . We calculate $\delta P_{\perp} \propto \langle \sin^2 \theta \cdot e^{2i\varphi}/r^3 \rangle$ in exactly the same manner for $P = T_{ii}$ and q_{ii} . Tables 1 and 2 do not show any discrepancy between the experimental and theoretical signs of *d*, but that is not the case for experimental q_2 , which is negative for H in OH, Li in LiO, and O in OH, NO. Note that q_{xx} , $q_{yy} = (-q_0 \pm \delta q_{\perp})/2$ so that a change in the sign of δq_{\perp} only exchanges q_{xx} with q_{yy} . Curiously, experiments on NO (X²Π_r) report $q_2(N) > 0$ but $q_2(O) < 0$ (Table 3). We point out this "anomaly" since

TABLE 2: Magnetic Hyperfine Coupling Constants for N, O, and F Atoms in the X²Π Radicals NO, OH, LiO, FO, and CF, as Well as A³Π of NH^{ab}

Х	XY	ref	$c (3/2T_{zz})$	$d T_{xx} - T_{yy} $	$b_{ m F}$	b	a'	а
Ν	$NO(\pi^1)$	tw	-1.531	2.992	0.026	0.536	2.482	
	expt	10e, f, g	-1.525	2.917	0.069	0.577	2.409	2.181
		5a	-1.418	(0)	0.173	(0.646)		
		5e	-1.500	(0)	0.027	(0.527)		
	$NH(\sigma\pi^3)$	tw	0.199	1.753	0.470	0.404	1.819	
	expt	7	0.394	1.720	0.491	0.360	1.851	2.321
		9b	0.205	2.325	0.471	0.403	2.393	2.560
		61	0.214	1.749	0.489	0.364	1.820	2.535
0	$OH(\pi^3)$	tw	-2.977	5.992	0.010	1.002	5.000	
	expt	11a	-2.846	5.693	0.142	(1.091)	4.744	4.057
	expt	11c, d	-3.054	5.940	0.084	(1.012)	4.922	4.436
		9b	-2.900	6.029	0.064	(1.031)	5.062	4.461
		6i	-2.897	5.875	0.054	(1.020)		4.418
		61	-2.809	5.777	0.040	(0.976)	4.841	4.419
		9d	-2.633	(0)	0.025	(0.853)		
	$LiO(\pi^3)$	tw	-2.772	5.346	-0.004	0.920	4.438	
	$NO(\pi^1)$	tw	-1.319	2.897	0.019	0.459	2.457	
	expt	10f, g	-1.290	2.850				
		5a	-1.269	(0)	0.065	(0.488)		
		5e	-1.207	(0)	0.027	(0.429)		
	$FO(\pi^3)$	tw	-2.881	5.851	0.013		4.891	
F	$CF(\pi^1)$	tw	-0.703	1.639	0.023	0.257	1.405	
	expt	13b, c	-0.703	1.578	0.036	0.536	1.344	1.406
		13a	-0.634	(0)	(0)	0.211		1.251
	$FO(\pi^3)$	tw	-1.244	2.158	0.022		1.743	
	expt	14b, c, d	-1.208	1.947	0.410	0.813	1.544	1.554

^a See footnotes^a and ^b in Table 1. ^b All data in atomic units.

TABLE 3: Electric Field Gradient Parameters q_{zz} and $\delta q = |q_{xx} - q_{yy}|$ Calculated for Selected X ² Π Radicals at Equilibrium (NH in Its A³ Π Excited State)^{*a,b*}

Х	XY	ref	$q_{zz} (-q_0)$	$ q_{xx} - q_{yy} q_2/2 $	Х	XY	ref	$q_{zz} (-q_0)$	$ q_{xx} - q_{yy} q_2/2 $
Н	$CH(\pi^1)$	tw	-0.230	0.123	Ν	$NO(\pi^1)$	tw	0.478	2.703
		6c	-0.255	(0)		expt	10e, f, g	0.387	2.411
		9a	-0.237	(0)			5a	0.682	2.869
	$OH(\pi^3)$	tw	-0.426	0.090			5b	0.327	2.967
	expt	11c, d	-0.433	0.094*			5h	0.385	2.416
		6c	-0.186°	(0)			5h	0.371	(0)
		6d	≈ -0.45	(0)			5d	0.502	(0)
	$NH(\sigma\pi^3)$	tw	-0.372	0.081		$NH(\sigma\pi^3)$	tw	-1.620	2.953
						expt	7	-1.478	2.280
					0	$OH(\pi^3)$	tw	-0.281	5.146
Li	$LiO(\pi^3)$	tw	0.059	0.023		expt	11c, d	-0.329	$5.6 \pm 0.8*$
	expt	12a	0.047	0.018			6c	0.319	(0)
	expt	12b	0.047	(0)			6d	-0.240	(0)
							6j	0.320	(0)
С	$CH(\pi^1)$	tw	1.027	2.024		$LiO(\pi^3)$	tw	1.632	4.304
		6c	0.928	(0)		$NO(\pi^1)$	tw	-0.205	2.896
		9a	0.943	(0)		expt	10e, f, g	0.223	2.70*
	$CF(\pi^1)$	tw	0.233	2.019			5h	-0.230	(0)
							6j	0.229	(0)
\mathbf{F}^{d}	$CF(\pi^1)$	tw	-1.554	1.849		$FO(\pi^3)$	tw	-3.245	5.129
	$FO(\pi^3)$	tw	-4.393	1.983					

^{*a*} Data in au. ^{*b*} Experimental $|q_2|$ corresponds to twice the theoretical $|q_{xx} - q_{yy}|$. A q_2 value tagged * indicates a negative q_2 in the original experimental article. ^{*c*} A theoretical $q_{zz} = -0.186$ au (Bender and Davidson, ref 6c) seems to be a misprint. Interpolating between their absolute values of 0.35 and 0.55 au for NH and FH, respectively, $q_H(OH) \approx -0.45$ au. ^{*d*} Experimental *q*'s from polyatomic molecules: q(F) = 2.7 au in CF₄ (ref 27d), and $q(F) \approx 4.5$ au in F₂O (ref 27f). A nuclear Q = -94.2 mb was used for ¹⁹F*(5/2) to convert experimental MHz data to *q* (au) (ref 27g).

experimentalists argue that *regular* ${}^{2}\Pi_{r}(\pi^{1})$ and *inverted* ${}^{2}\Pi_{i}(\pi^{3})$ states have positive and negative q_{2} 's, respectively.^{1c,18}

The interaction between the nuclear quadrupole (Q) and the efg at a given nucleus is given by the nuclear quadrupole constant $\chi_{0,2} = eQq_{0,2}$.^{10d,26} Clearly, $\chi \neq 0$ requires a nuclear quadrupole moment $Q \neq 0$, or nuclear spin $I \geq 1$. It is often assumed that nuclear quadrupole spectroscopy cannot be applied to fluorine-containing compounds because $Q[^{19}F(I = 1/_2)] = 0$. However, the *nuclear* excited state $^{19}F^*(I = 5/_2)$ has $Q \neq 0$, and various experimental studies have reported $q[^{19}F^*]$ for CIF, $(C_2F_4)_n$, OF₂, SiF₄, BF₃, and a series of fluorobenzenes.²⁷

III.C. Molecular Quadrupole Moment (θ_{zz}) and Perpendicular Anisotropy ($\delta \theta_{\Pi}$). The quadrupole moment has the parallel (θ_{zz}) and perpendicular ($\delta \theta_{\Pi}$) anisotropies

$$\Theta_{\parallel}: \quad \Theta_{zz}\{\Theta_0^{(2)}\} = \left\langle \Lambda = +1|\sum_i e_i r_i^2 \cdot (3\cos^2\theta_{iz} - 1)|\Lambda = +1 \right\rangle_{CD}$$
(9)

$$[\delta \Theta_{\perp}]: \quad |\Theta_{xx} - \Theta_{yy}|\{\Theta_{|2|}^{(2)}\} = \left\langle \Lambda = + 1|\sum_{i} e_{i}r_{i}^{2} \cdot \sin^{2}\theta_{iz} \cdot e^{i2\phi}||\Lambda = -1 \rangle_{CD} \right\rangle (10)$$

The nuclear contribution is $\langle zz \rangle_{nuc} = Z_X r_X^2 + Z_Y r_Y^2$, with r_X and r_Y being the atomic coordinates in the chosen origin. The latter corresponds to the center of mass for most of the present diatomics, except for the excited states $A^3\Pi$ (NH) and $A^2\Sigma^+$ (OH), for which the center of positive charge is used (GO3 calculations collapse into the ground state when skipping the standard orientation).

Table 4 lists the calculated Θ 's for all Π species, together with those for a low-lying Σ state. Relevant quantities are $\Theta_{zz} = z^2 - (x^2 + y^2)/2$ and $\delta \Theta_{\Pi} = |\Theta_{xx} - \Theta_{yy}| = (3/2)|x^2 - y^2|$. Other parameters in Table 4 are the electric dipole moment (μ) , Cartesian second moments, and the spatial extent $\langle r^2 \rangle_{el}$.

Since Π states have $\delta \Theta_{\Pi} \neq 0$, their CDD contours *in the xy-plane* are elliptically shaped (vs circularly shaped in Σ states). No experimental Θ 's are known for any of these radicals, except

NO (Table 4). To the best of our knowledge, theoretical Θ 's are available for three cases (CH, OH, NO), but only OH was correctly described via its complete set { Θ_{zz} , $\delta\Theta_{\perp}$ } (Table 4).

Regarding the terms involved in $\Theta_{zz} = [z^2 - (x^2 + y^2)/2]$, all electronic second moments are intrinsically *negative* $(x_{el}^2 < 0, etc.)$, whereas the *positive* nuclear contribution z_{nuc}^2 only affects z^2 . Therefore, for neutral XY one expects $|z^2|_{el} > |z^2|_{nuc}$. More precisely, a negative Θ_{zz} describes a "prolate" CDD since $|z^2|$ is larger than the average $|x^2 + y^2|/2$, as found, for example, in O₂, NO, N₂, CO, and CO₂. Complementarily, $\Theta_{zz} > 0$ reveals an "oblate" CDD, as in FH, ClH, CS₂, and C₂H₂.^{5g,19,28}

Our calculations find Θ_{zz} to be negative for X² Π radicals with one unpaired π -electron, like $(\sigma^2 \pi)$ in CH, or $(\sigma^2 \pi^4 \pi)$ in NO, CF. Conversely, $\Theta_{zz} > 0$ for ² $\Pi(\pi^3)$ radicals like OH, LiO, and FO.

As said before, a Π and a Σ state each have been considered for all radicals in Table 4. From CH to CF, the corresponding excited state arises via an excitation $\sigma \rightarrow \pi(\pi^*)$ relative to the ground state. Upon excitation, Θ_{zz} always increases. The ${}^{4}\Sigma^{-}$ state of FO arises from a $\pi^* \rightarrow \sigma^*$ excitation relative to $X^2\Pi(\pi^4\pi^{*3})$, resulting in a decrease in Θ_{zz} (both values are positive and small, Table 4).

Rodrigues and Varandas²⁹ calculated for CH ($X^2\Pi$, $a^4\Sigma^-$), NH ($X^3\Sigma^-$), and OH ($X^2\Pi$) the function $\Theta_{zz}(R)$. The values in Figures 1–4 from ref 29 are in line with our data in Table 4. However, their discussion about atom-diatom electrostatic interactions between the three diatomics above should be revised since $X^2\Pi$ states were assumed to have axially symmetric CDDs.

Experimental Θ 's are only available for NO.^{3,5g,28} Tejwani et al.^{10c} found $\Theta'(NO) = 1.78$ au, supporting a median $\langle \Theta' \rangle =$ 1.58 au from other (eight) experimental values from 1.4 to 2.3 au (sign unknown). Since those works reported $\Theta' = 2\Theta$ (section III.A), the corrected values are $\Theta = 0.89$ and $\langle \Theta \rangle =$ 0.79 au. Our calculations and two others^{5e,f} agree with experiments, but $\Theta_{zz}(NO)$ is negative (-0.83 to -0.88 au); less

TABLE 4: Parallel (Θ_{z}) and Perpendicular ($\delta\Theta_{\Pi}$) Components of the Molecular Quadrupole Moment⁴

		-			÷	-		
XY	state	ref	μ^b	$\Theta_{zz}{}^c$	$\delta \Theta_{\Pi}{}^d$	$-\langle z^2 \rangle^e$	$-\langle x^2, y^2 \rangle^f$	$\langle r^2 \rangle_{\rm el}^g$
СН	$X^2\Pi(\sigma^2\pi)$	tw	0.57	-0.55	1.35	5.63	5.08	19.78
		9a	0.57	-0.69	(0)			
	$a^4\Sigma^{-}(\sigma\pi^2)$	tw	0.26	1.59	0	4.03	5.62	18.94
		9a	0.26	2.08				
NH	$X^{3}\Sigma^{-}(\sigma^{2}\pi^{2})$	tw	0.60	0.47	0	4.33	4.80	17.38
	$A^{3}\Pi (\sigma\pi^{3})^{h}$	tw	0.50	2.45	2.17	3.15	5.60	17.72
OH	$X^2\Pi(\sigma^2\pi^3)$	tw	0.65	1.12	1.47	3.53	4.65	15.82
		6d, e		1.35	1.31^{i}			
		6k	0.65	1.39	1.18			
		6g	0.64	1.39	(0)			
	$A^2\Sigma^+(\sigma\pi^4)$	tw	0.71	3.00	0	2.35	5.28	16.17
		6g	0.72	3.18	0			
LiO	$X^2\Pi(\sigma^2\pi^3)$	tw	-2.56	4.13	1.82	1.99	6.12	36.55
	$A^2\Sigma^+(\sigma\pi^4)$	tw	-2.25	5.38	0	1.30	6.68	33.90
NO	$X^2\Pi(\sigma^2\pi^4\pi^*)$	tw	0.05	-0.88	0.86	8.54	7.66	41.51
	expt	10c	0.06^{j}	0.89				
		5e	0.06	-0.83	(0)			
		5f	0.07	-0.83	(0)			
		5a	0.10	-0.68	(0)			
		5b	0.06	-0.72	(0)			
	$4\Sigma^{-}(\sigma\pi^{4}\pi^{*2})$	tw	-0.29	1.14	0	7.03	8.17	46.53
CF	$X^2\Pi(\sigma^2\pi^4\pi^*)$	tw	0.31	-1.33	0.14	9.25	7.92	45.73
	${}^{4}\Sigma^{-}(\sigma\pi^{4}\pi^{*2})$	tw	-0.24	0.69	0	7.45	8.14	46.40
FO	$X^2\Pi(\pi^4\pi^{*3})$	tw	-0.00_{4}	0.19	1.08	7.26	7.45	49.92
		14a	-0.14	0.10				
	${}^{4}\Sigma^{-}(\pi^{4}\pi^{*2}\sigma^{*})$	tw	-0.69	-0.40	0	<u>7.75</u>	<u>7.35</u>	72.49

^{*a*} Dipole moments (μ), second moments, and electronic spatial extent are also given. All data in atomic units. ^{*b*} Expectation value $\langle z \rangle$. A positive μ indicates a X⁻Y⁺ polarity. ^{*c*} $\Theta_{zz} = z^2 - (x^2 + y^2)/2$. In general, $\Theta_{ii} = \langle ii \rangle - (\langle jj \rangle + \langle kk \rangle)/2$, with $\{ii, jj, kk\} \equiv \{xx, yy, zz\}$. Unless specified otherwise (footnote^{*h*}), origin at center of mass for each of the most abundant isotope. ^{*d*} $\delta \Theta_{\Pi} = |\Theta_{xx} - \Theta_{yy}| = (3/2)|x^2 - y^2|$. ^{*e*} $z^2 = z^2_{el} + z^2_{nuc}$, where z^2_{el} and z^2_{nuc} are negative and positive, respectively. For illustration, Cartesian second moments are underlined when $\Theta_{zz} < 0$. ^{*f*} $-\langle x^2, y^2 \rangle$ stands for the average $-(x^2 + y^2)/2$. Note that $x^2 \equiv x^2_{el}$ and $y^2 \equiv y^2_{el}$. ^{*g*} $\langle r^2 \rangle_{el} = -\Sigma \langle ii \rangle_{el}$. ^{*h*} Origin at center of positive charges (see text). ^{*i*} Original value of 2.62 au for $\delta \Theta'_{\Pi} = |\Theta'_{xx} - \Theta'_{yy}| = 3|x^2 - y^2|$, i.e., Hirschfelder et al. quadrupole (ref 16). ^{*j*} Ref 10a.

extensive studies found -0.68^{5a} and -0.72 au.^{5b} All previous studies neglected $\delta\Theta_{\Pi}$, which according to our results { Θ_{zz} , Θ_{xx} , Θ_{yy} } = {-0.88, 0.87, 0.01 au} corresponds to $\delta\Theta_{\Pi} = 0.86$ au. (Assumption of axial symmetry gives {-0.88, 0.44, 0.44 au} instead.) Theoretical studies^{5f,g} dealing with the secondvirial/dispersion coefficients and anisotropic dipole properties of NO should be taken with caution since they assumed $\delta\Theta_{\Pi} = 0$.

IV. Discussion

The results in Tables 1-4 confirm that a correct description of *traceless* second-rank tensor properties in Π states requires *two* independent parameters, the parallel (P_{\parallel}) and perpendicular (δP_1) anisotropies. These statements are in line with experimental studies on the magnetic (T_{ii}) and electric (q_{ii}) hyperfine cc's of Π states. From the very beginning (1950s), spectroscopists took properly into account the axial asymmetry of the CDD/SDDs for $|\Lambda| = 1$ states,^{1,2} by providing two independent parameters each, $\{c, d\}$ and $\{q_0, q_2\}$. The situation is different for molecular Θ 's since they are not only difficult to measure experimentally3,28 but available data are mostly rotational averages ($\delta \Theta_{\perp}$ cannot be detected). However, there is no doubt that Π states also have two independent Θ 's since (1) all hfcc's indicate the CDD/SDDs to be axially asymmetric around each nucleus, and the same should apply to the whole molecule, (2)the T_{ii} , q_{ii} , and Θ_{ii} operators share the same rotational symmetry properties,³⁰ and (3) as shown next, two other experimental processes-collisions X₂ + M, and van der Waals (vdW) interactions-provide support to our statements.

Scattering studies in the 1970s involving $A^1\Pi_u$ of Na₂ and Li₂ found the rainbow spectra to be markedly different from those with $X^1\Sigma_g^{+}$ states.³¹ Prior interpretations had assumed the

multipole expansion $V(r, \theta) = \sum_l V_l(r)P^l(\cos \theta)$ of the X₂potential to be valid for *any* Λ -value. However, the A¹ Π_u spectra could not be reproduced by a cylindrically symmetric potential $V(r, \theta)$ with only one anisotropy (Θ_{zz}). The discrepancy was lifted³² using the multipole expansion

$$V(r, \theta, \phi) = V_{00}(r) + V_{20}(r)L_0^2(\cos \theta) + (4\pi/5)^{1/2}V_{22}(r)[Y_2^{(2)}(\theta, \phi) + Y_{-2}^{(2)}(\theta, \phi)] + \dots, (11)$$

including the extra term $Y_{\pm 2}^{2}(\theta, \varphi)$ to describe axial asymmetry. Now, up to the quadrupole, the Π potential $V(r, \theta, \varphi)$ contains three terms: (1) $V_{00}(r)$, the isotropic term equivalent to P_{0}^{0} [$\propto r^{2}$], (2) one parallel anisotropy $L_{0}^{2}(\cos \theta)$ [equivalent to $P_{0}^{2} = \Theta_{zz} = (z^{2} - (x^{2} + y^{2})/2)$], and (3) a perpendicular anisotropy $(Y_{2}^{(2)}(\theta, \varphi) + Y_{-2}^{(2)}(\theta, \varphi))$ [equivalent to $P_{12|}^{2} = \delta \Theta_{\perp} = |\Theta_{xx} - \Theta_{yy}| = (3/2)|x^{2} - y^{2}|$].

The interesting question now arises about the behavior expected for $X_2 + M$ collisions involving a ${}^{2S+1}\Delta_{(g,u)}$ state [$\Lambda = 2$], like the long-lived a ${}^{1}\Delta_{g}(O_2)$ state. We are unaware of experimental studies of XY(Δ) + M(¹S) collisions. As previously discussed,⁴ the CDD/SDDs of Δ states behave as axially *symmetric* for 2^{*l*}-poles with l = 1, 2, 3, but *asymmetric* for $l \ge 4$. The multipole expansion (up to the hexadecapole and omitting *r* dependency) reads as

$$V(\theta, \phi) = V_{00} + V_{20}L_0^2(\cos \theta) + V_{40}L_0^4(\cos \theta) + kV_{44}[Y_4^{(4)}(\theta, \phi) + Y_{-4}^{(4)}(\theta, \phi)] + \dots, (12)$$

The first two terms are the isotropic and *parallel* quadrupolar contributions, whereas the last three are the hexadecapole anisotropies, one parallel $[L_0^4(\cos \theta)]$ and one perpendicular $[Y_4^{(4)} + Y_{-4}^{(4)}]$.

TABLE 5: Comparison between Different Magnetic (T) and Electric (q) Coupling Constants^a

	$-(2/3)T_{zz}(-c)$	$q_{zz} (-q_0)$	$ T_{xx} - T_{yy} \ (d)$	$ q_{xx} - q_{yy} \ (q_2 /2)$	$\delta(T/q)_{\perp}^{b}$	-d/c
CH (π^1)	1.017	1.027	2.104	2.024	1.04	2.07
$\overline{C}F(\pi^1)$	1.114	0.233	2.163	2.019	1.07	1.94
$\overline{NO}(\pi^1)$	1.531	0.478	2.992	2.703	1.11	1.95
$\overline{\mathrm{NO}}(\pi^1)$	1.319	-0.205	2.897	2.896	1.00	2.20
$OH(\pi^3)$	2.977	-0.281	5.992	5.146	1.16	2.01
$\overline{\text{LiO}}(\pi^3)$	2.772	1.632	5.346	4.304	1.24	1.93
FO (π^3)	2.881	-3.245	5.851	5.129	1.14	2.03
$C\underline{F}(\pi^1)$	0.703	-1.554	1.639	1.849	0.89	2.33
$\underline{FO}(\pi^3)$	1.244	-4.393	2.158	1.983	1.09	1.73

^{*a*} All data in atomic units. ^{*b*} $\delta(T/q)_{\perp} = [\delta T_{\perp}/\delta q_{\perp}] = |T_{xx} - T_{yy}|/|q_{xx} - q_{yy}| = 2|d/q_2|.$

Also interesting is the 1976 paper by Nielson et al.^{10b} about vdW interactions of diatomic II states with atoms, in particular the C_6 coefficient for NO(X²II) plus noble-gas M(¹S). Independent of the developments on collision theory discussed above, these authors found that a correct description of the NO potential requires the inclusion of $Y_m^{(l)}(\theta, \varphi)$ with $m = 0, \pm 2$ for l = 2. Nielson et al. also mentioned that theoretical C_6 coefficients for $\Delta(\Lambda = 2)$ and $\Phi(\Lambda = 3)$ states have to include $Y_{0,\pm 4}^{(l\geq 4)}(\theta, \varphi)$ and $Y_{0,\pm 6}^{(l\geq 6)}(\theta, \varphi)$, respectively, as independently shown by us for multipoles.⁴

One important difference between ${}^{2}\Sigma^{+}$ and ${}^{2}\Pi$ states, at least from the standpoint of the hfcc's, is that the perpendicular parameters *d* and *q*₂ carry the most relevant information about the ${}^{2}\Pi$ state (they are also related to the atomic values),³³ whereas the corresponding parallel terms *c* and *q*₀ are seldom discussed by experimentalists. The opposite picture holds for ${}^{2}\Sigma^{+}$ states, where (let us say, by symmetry restraints) the only parameters are *c* and *q*₀. For example, for N₂⁺ we have calculated *c* = 84 MHz for X²\Sigma_g⁺, to be compared with *d* = 77 MHz in the A²\Pi_u state.³⁰

Other relations between hfcc's could be of general interest. Table 5 compares theoretical values for tensor components of the same kind, i.e., parallel (c vs q_0) and perpendicular (d vs $q_2/2$). This table also lists two relevant ratios, one between perpendicular anisotropies ($\delta T_{\perp}/\delta q_{\perp}$) and the other between magnetic hfcc's (-d/c). As seen in Table 5, no correlation is apparent between c and q_0 , neither on signs nor magnitudes. Since the efg parameter q_0 contains a nuclear contribution from the neighboring atomic center, one may think that correcting q_0 to get the pure electronic contribution (as in c) could solve the problem, but this is not the case (charge transfer along z might significantly alter the CDD expected for corresponding p_z -orbitals).

On the other hand, a very nice correlation exists between the perpendicular magnetic and electric components, with the ratio $\delta T_{\perp}/\delta q_{\perp} = |T_{xx} - T_{yy}|/|q_{xx} - q_{yy}|$ generally lying slightly above 1.0 (only CF has a low ratio of 0.89). Thus, contour lines in the *xy*-plane are quite similar for both CDDs and SDDs. Also, experimental and theoretical atomic data^{1,24} indicate that $\langle 1/r^3 \rangle_{\text{SDD}}$ is about 10% larger than $\langle 1/r^3 \rangle_{\text{CDD}}$, and the same trend is found here for the present radicals.

The ratio -d/c lies close to 2. According to the literature,^{1,24} for a p_{π} -electron the expectation value $\mathbf{I} = \langle p_{\pi} | (3 \cos^2 \theta - 1) | p_{\pi} \rangle$ = -2/5, whereas that of $\mathbf{II} = \langle p_{\pi} | (3 \sin^2 \theta) | p_{\pi} \rangle = 4/5$. Since *c* and *d* are, respectively, proportional to \mathbf{I} and \mathbf{II} , pure p_{π} -AOs in isolated atoms should have a ratio -d/c = 2. As seen in Table 5, the diatomics studied here deviate little from the atomic cases. Note that the F atom in both CF and FO appears to the most distorted among all systems considered.

V. Concluding Remarks

Here, attention has been called to a common error in the literature.^{3,34,35} that charge- and spin-DDs are axially symmetric in *any* linear state (i.e., $x^2 = y^2 \neq z^2$ or $P_{xx} = P_{yy} = -P_{zz}/2$ for traceless P_{ii}). Our calculations successfully describe the axial asymmetry of the CDD/SDDs in X² Π states [ref 18, p 367]. Two different molecular regions have been investigated: (1) those close to the nuclei (magnetic/electric hfcc's proportional to $\langle 1/r^3 \rangle$) and (2) those toward the outermost regions (Cartesian second-moments $\langle ii \rangle^2$ or their linear combinations Θ_{ii}). The three traceless properties have been calculated with the B3LYP/aug-cc-pVQZ method for all neutral X² Π ground states containing H to F atoms. The calculated values reproduce well experimental and more sophisticated theoretical data. Except for OH, our { Θ_{zz} , $\delta\Theta_{\perp}$ }'s are new for all diatomics considered here.

The traceless tensors $P_{ii} = T_{ii}$, q_{ii} , Θ_{ii} exhibit the same properties upon (the symmetry operation of) rotation about the molecular axis z.³⁶ Thus, regarding the number of independent terms, all three tensors share a common behavior (spin multiplicity is irrelevant): Π states have n = 2 independent components (anisotropies),⁴ whereas all other (non- Π) states have n = 1. These constraints are well-known to experimental spectroscopists, who always report the pairs (c,d) and (q_0, q_2) for a given Π state, but just c and q_0 for all other electronic states (Σ , Δ , Φ , etc.). No direct experimental determinations of Θ_{zz} and $\delta\Theta_{\perp}$ are available to verify that Π states also have two independent anisotropies. However, the rainbow spectra of $X_2(\Pi) + M(S)$ collisions could only be interpreted by including two independent quadrupole terms in the multipole expansion of the Π potential. Gratefully, this corroborates the existence of two independent quadrupoles predicted by theory.

Certainly, the axial asymmetry of the CDD/SDDs in linear Π states affects all properties depending on these density distributions. This applies, besides the traceless properties studied here, to traced tensors as well—for example, dipole (hyper)polarizabilities α and β ,³⁷ magnetizabilities, and NMR chemical shifts²⁶—which should have n = 3 independent parameters for Π states (isotropic term plus two anisotropies). For the same properties, Σ states have n = 2 (i.e., just one anisotropy).

Acknowledgment. The authors thank NSERC (Canada) for financial support.

References and Notes

(1) (a) Frosch, R. A.; Foley, H. M. J. Chem. Phys. **1952**, 88, 1337. (b) Weltner, W. Magnetic Atoms and Molecules; Dover: New York, 1983. (c) Hirota, E. High-Resolution Spectroscopy of Transient Molecules; Springer: Berlin, 1985.

(2) Das, T. P.; Hahn, E. L. Solid State Phys., Suppl. 1958, 1, 1.

(3) Buckingham, A. D. Q. Rev. Chem. Soc. 1959, 13, 183; J. Chem. Phys. 1959, 30, 1580; Adv. Chem. Phys. 1967, 12, 107; in Physical Chemistry. An Advanced Treatise; Henderson, D., Ed.; Academic Press: New York, 1970; Vol. IV, Molecular Properties, p 349.

(4) Bruna, P. J.; Grein, F. J. Chem. Phys. 2007, 127, 074107.

(5) (a) Green, S. Chem. Phys. Lett. 1972, 13, 552; 1973, 23, 115. (b)
Billingsley, F. P. J. Chem. Phys. 1975, 62, 864. (c) Walch, S. P.; Goddard,
A. Chem. Phys. Lett. 1975, 33, 18. (d) Cummins, P. L.; Bacskay, G. B.;
Hush, N. S.; Ahlrichs, R. J. Chem. Phys. 1987, 86, 6908. (e) Feller, D.;
Glendening, E. D.; Cullough, E. A.; Miller, R. J. J. Chem. Phys. 1993, 99,
2829. (f) Meng, L.; Duan, Y.-Y. Mol. Phys. 2006, 104, 2891. (g) Buendgen,
P.; Grein, F.; Thakkar, A. J. J. Mol. Struct. (THEOCHEM) 1995, 334, 7.
(h) Buendgen, P.; Thakkar, A. J.; Kumar, A.; Meath, W. J. Mol. Phys. 1997,
90, 721. (i) Polak, R.; Fiser, J. Chem. Phys. 2004, 303, 73; 2006 326, 611;
2008, 351, 83.

(6) (a) Radford, H. E. Phys. Rev. 1961, 122, 114; 1962, 126, 1035. (b) Kayama, K. J. Chem. Phys. 1963, 39, 1507. (c) Bender, C. F.; Davidson, E. R. Phys. Rev. 1969, 183, 23. (d) Chu, S. I.; Yoshimine, M.; Liu, B. J. Chem. Phys. 1974, 61, 5389. (e) Chu, S. I. Astrophys. J. 1976, 206, 640. (f) Coxon, J. A.; Sastry, K. V.; Austin, J. A.; Levy, D. H. Can. J. Phys. 1979, 57, 619. (g) Degli Esposti, A. D.; Werner, H.-J. J. Chem. Phys. 1990, 93, 3351. (h) Graff, M. M.; Wagner, A. F. J. Chem. Phys. 1990, 92, 2423. (i) Chong, D.; Langhoff, S. R.; Bauschlicher, C. W. J. Chem. Phys. 1991, 94, 3700. (j) Bailey, W. C. Chem. Phys. Lett. 1998, 292, 71. (k) Wormer, P. E. S.; Klos, J. A.; Groenenboom, G. C.; van der Avoird, A. J. Chem. Phys. 2005, 122, 244325. (l) Fitzpatrick, J. A.; Manby, F. R.; Western, C. M. J. Chem. Phys. 2005, 122, 005, 122, 084312. (m) Spelsberg, D. J. Chem. Phys. 1999, 111, 9625. (n) Bussery-Honvault, B.; Dayou, F.; Zanchet, A. J. Chem. Phys. 2008, 129, 234302.

(7) Ubachs, W.; Ter Meulen, J. J.; Dymanus, A. Can. J. Phys. 1984, 62, 1374.

(8) Gammon, R. H.; Stern, R. C.; Lesk, M. E.; Wicke, B. G.; Klemperer, W. J. Chem. Phys. **1971**, 54, 2136.

(9) (a) Lie, G.; Hinze, J.; Liu, B. J. Chem. Phys. 1973, 59, 1887. (b)
Kristiansen, P.; Veseth, L. J. Chem. Phys. 1986, 84, 2711, 6336. (c) Engels,
B.; Peyerimhoff, S. D.; Karna, S. P.; Grein, F. Chem. Phys. Lett. 1988, 152, 397. (d) Momose, T.; Yamaguchi, M.; Shida, T. J. Chem. Phys. 1990, 93, 7285. (e) Davidson, S. A.; Evenson, K. M.; Brown, J. M. J. Mol. Spectrosc. 2004, 223, 20.

(10) (a) Neumann, R. M. Astrophys. J. 1970, 161, 779. (b) Nielson, G. C.; Parker, G. A.; Pack, R. T. J. Chem. Phys. 1976, 64, 2055. (c) Tejwani, G. D. T.; Golden, B. M.; Yeung, E. S. J. Chem. Phys. 1976, 65, 5110. (d) Western, C. M.; Langridge-Smith, P. R. R.; Howard, B. J.; Novick, S. E. Mol. Phys. 1981, 44, 145. (e) Saleck, A. H.; Yamada, K. M. T.; Winnewisser, G. Mol. Phys. 1991, 72, 1135. (f) Saleck, A. H.; Liedtke, M.; Dolgner, A.; Winnewisser, G. Z. Naturforsch. 1994, A49, 1111. (g) Klisch, E.; Belov, S. P.; Schieder, R.; Winnewisser, G.; Herbst, E. Mol. Phys. 1999, 97, 65.

(11) (a) Carrington, A.; Lucas, N. J. D. Proc. R. Soc. London, Ser. A 1970, 314, 567. (b) Gwinn, W. D.; Turner, B. E.; Gross, W. M.; Blackman, G. L. Astrophys. J. 1973, 179, 789. (c) Steimle, C.; Woodwrad, D. R.; Brown, J. M. J. Chem. Phys. 1986, 85, 1296. (d) Leopold, K. R.; Evenson, K. M.; Comben, E. R.; Brown, J. M. J. Mol. Spectrosc. 1987, 122, 440.

(12) (a) Feund, S. M.; Herbst, E.; Mariella, R. P.; Klemperer, W. J. Chem. Phys. **1972**, 56, 1467. (b) Yamada, C.; Fujitake, M.; Hirota, E. J. Chem. Phys. **1989**, 91, 137.

(13) (a) Hall, J. A.; Richards, W. G. *Mol. Phys.* **1972**, *23*, 331. (b) Brown,
J. M.; Schubert, J. E.; Saykally, R. J.; Evenson, K. M. *J. Mol. Spectrosc.* **1986**, *120*, 421. (c) Morino, I.; Yamada, K. M.; Belov, S. P.; Winnewisser,
G.; Herbst, E. *Astrophys. J.* **2000**, *532*, 377.

(14) (a) O'Hare, P. A. G.; Wahl, A. C. J. Chem. Phys. 1970, 53, 2469.
(b) Tomassia, F.; Brown, J. M.; Evenson, K. M. J. Chem. Phys. 1999, 110, 7273.
(c) Tomassia, F.; Brown, J. M.; Saito, S. J. Chem. Phys. 2000, 112, 5523.
(d) Tomassia, F.; Brown, J. M.; Watson, J. K. G. Mol. Phys. 2002, 100, 3485.

(15) (a) Fano, U.; Racah, G. *Irreducible Tensorial Sets*; Academic Press: New York, 1959. (b) Silver, B. L. *Irreducible Tensor Methods*; Academic Press: New York, 1976.

(16) Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids; J. Wiley & Sons: New York, 1954.

(17) McLean, A. D.; Yoshimine, M. J. Chem. Phys. 1967, 47, 1927.
(18) Brown, J. M.; Carrington, A. Rotational Spectroscopy of Diatomic Molecules; Cambridge University Press: Cambridge, U.K., 2003.

(19) (a) Lawson, D. B.; Harrison, J. F. J. Phys. Chem. A **1997**, 101, 4781; Mol. Phys. **1998**, 93, 519. (b) Harrison, J. F. J. Chem. Phys. **2003**, 119, 8763; **2008**, 128, 114320.

(20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J. J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision B.04; Gaussian, Inc.: Pittsburgh, PA, 2003.

(21) Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular Structure; Van Nostrand-Reinhold: New York, 1979; Vol. IV.

(22) Engels, B.; Eriksson, L. A.; Lunell, S. Adv. Quantum Chem. 1996, 27, 298.

(23) Geisen, H.; Neuschaefer, D.; Ottinger, Ch. Z. Phys. D: At., Mol. Clusters 1990, 17, 137.

(24) Hirota, E. J. Phys. Chem. 1983, 87, 3375.

(25) Rajendra, Pd.; Chandra, P. J. Chem. Phys. 2001, 114, 1589.

(26) Flygare, W. H. Molecular Structure and Dynamics; Prentice-Hall: Englewood Cliffs, NJ, 1978.

(27) (a) Sugimoro, K.; Mizobuchi, A.; Nakai, K. *Phys. Rev.* 1964, *134*, B539. (b) Kreische, W.; Maar, H. U.; Niedrig, H.; Reuter, K.; Roth, K. *Hyperfine Interact.* 1978, *4*, 732. (c) Mishra, K. C.; Duff, K. J.; Das, T. P. *Phys. Rev. B* 1982, *25*, 3389. (d) Barfuss, H.; Boehnlein, G.; Gradl, G.; Hohenstein, H.; Kreische, W.; Niedrig, H.; Reimer, A. J. Chem. Phys. 1982, *76*, 5103. (e) Tossell, J. A.; Lazzeretti, P. J. *Phys. B: At. Mol. Opt. Phys.* 1986, *19*, 3217. (f) Bertholdt, E.; Frank, M.; Gubitz, F.; Kreische, W.; Loesch, B.; Ott, Ch.; Roeseler, B.; Schneider, M.; Schwab, F.; Stammler, K.; Weeske, G. J. Mol. Struct. 1989, *192*, 383. (g) Pyykko, P. *Mol. Phys.* 2008, *106*, 1965.

(28) (a) Stogryn, D. E.; Stogryn, A. P. Mol. Phys. **1966**, 11, 371. (b) Krishnaji, V. P. Rev. Mod. Phys. **1966**, 38, 690.

(29) Rodrigues, S. P. J.; Varandas, A. J. C. Phys. Chem. Chem. Phys. 2000, 2, 435.

(30) Bruna, P. J.; Grein, F. J. Mol. Spectrosc. 2008, 250, 75.

(31) (a) Ottinger, Ch.; Velasco, R.; Zare, R. N. J. Chem. Phys. **1970**, 52, 1636. (b) Ottinger, Ch.; Poppe, D. Chem. Phys. Lett. **1971**, 8, 513. (c) Bergmann, K.; Demtroeder, W. J. Phys. B: At. Mol. Opt. Phys. **1972**, 5, 1386, 2098.

(32) Klar, H. J. Phys. B: At. Mol. Opt. Phys. 1973, 6, 2139.

(33) Bruna, P. J.; Grein, F. Mol. Phys. 2006, 104, 429.

(34) (a) Jansen, L. *Physica* 1957, 23, 599; *Phys. Rev.* 1958, 110, 661.
(b) Kielich, S. *Physica* 1965, 31, 444.

(35) (a) Buckingham, A. D.; Pople, J. A. Proc. Phys. Soc. London 1955, A68, 905. (b) Buckingham, A. D.; Stephen, M. J. Trans. Faraday Soc. 1957, 53, 884.

(36) Hougen, J. In *Physical Chemistry. An Advanced Treatise*; Henderson, D., Ed.; Academic Press: New York, 1970; Vol. IV, Molecular Properties, p 390.

(37) Atoms, Molecules and Clusters in Electric Fields: Theoretical Approaches to the Calculation Electric Polarizability; Maroulis, G., Ed.; Imperial College Press: London, 2006.

JP807885C